Chapter-7

(Triangles)

- Triangle - A closed figure formed by three intersecting lines is called a triangle. A triangle has three sides, three angles and three vertices.
- Congruent figures - Congruent means equal in all respects or figures whose shapes and sizes are both the same for example, two circles of the same radii are congruent. Also two squares of the same sides are congruent.
- Congruent Triangles - two triangles are congruent if and only if one of them can be made to superpose on the other, so as to cover it exactly.
- If two triangles ABC and PQR are congruent under the correspondence $A \leftrightarrow$ $P, B \leftrightarrow Q$ and $C \leftrightarrow R$ then symbolically, it is expressed as $\triangle A B C \cong \triangle P Q R$

- In congruent triangles corresponding parts are equal and we write 'CPCT' for corresponding parts of congruent triangles.
- SAS congruency rule - Two triangles are congruent if two sides and the included angle of one triangle are equal to the two sides and the included angle of the other triangle. For example $\triangle A B C$ and $\triangle P Q R$ as shown in the figure satisfy SAS congruent criterion.

- ASA Congruence Rule - Two triangles are congruent if two angles and the included side of one triangle are equal to two angles and the included side of other triangle. For examples $\triangle A B C$ and $\triangle D E F$ shown below satisfy ASA congruence criterion.

- AAS Congruence Rule - Two triangle are congruent if any two pairs of angles and one pair of corresponding sides are equal for example $\triangle A B C$ and $\triangle D E F$ shown below satisfy AAS congruence criterion.

- AAS criterion for congruence of triangles is a particular case of ASA criterion.
- Isosceles Triangle - A triangle in which two sides are equal is called an isosceles triangle. For example $\triangle A B C$ shown below is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$.

- Angle opposite to equal sides of a triangle are equal.
- Sides opposite to equal angles of a triangle are equal.
- Each angle of an equilateral triangle is 60°.
- SSS congruence Rule - If three sides of one triangle are equal to the three sides of another triangle then the two triangles are congruent for example $\triangle A B C$ and $\triangle D E F$ as shown in the figure satisfy SSS congruence criterion.

- RHS Congruence Rule - If in two right triangles the hypotenuse and one side of one triangle are equal to the hypotenuse and one side of the other triangle then the two triangle are congruent. For example $\triangle A B C$ and $\triangle P Q R$ shown below satisfy RHS congruence criterion.

RHS stands for right angle - Hypotenuse side.

- A point equidistant from two given points lies on the perpendicular bisector of the line segment joining the two points and its converse.
- A point equidistant from two intersecting lines lies on the bisectors of the angles formed by the two lines.
- In a triangle, angle opposite to the longer side is larger (greater)
- In a triangle, side opposite to the large (greater) angle is longer.
- Sum of any two sides of a triangle is greater than the third side.

Section - A

Q. 1 Which of the following is not a criterion for congruence of triangles?
(a) SAS
(b) SSA
(c) ASA
(d) SSS
Q. 2 If $A B=Q R, B C=P R$ and $C A=P Q$ then
(a) $\triangle A B C \cong \triangle P Q R$
(b) $\triangle C B A \cong \triangle P R Q$
(c) $\triangle B A C \cong \triangle R P Q$
(d) $\triangle P Q R \cong \triangle B C A$
Q. 3 In $\triangle \mathrm{PQR}$, if $\angle R>\angle Q$ then
(a) $Q R>P R$
(b) $P Q>P R$
(c) $P Q<P R$
(d) $Q R<P R$
Q. $4 \triangle A B C \cong \triangle D E F$ and if $A B=3=D E$ and $\mathrm{BC}=\mathrm{EF}=4$ then necessary condition is
(a) $\angle A=\angle D$
(b) $\angle B=\angle E$
(c) $\angle C=\angle F$
(d) $C A=F D$
Q. 5 In the given figure, if $\mathrm{OA}=\mathrm{OB}, \mathrm{OD}=\mathrm{OC}$ then $\triangle A O D \cong \triangle B O C$ by congruence rule.
(a) SSS
(b) ASA
(c) SAS
(d) RHS

Q. 6 In the figure if $\mathrm{PQ}=\mathrm{PR}$ and $\angle P=80^{\circ}$, then measure of Q is
(a) 100°
(b) 50°
(c) 80°
(d) 40°

Q. 7 In the figure $\triangle A B C \cong \triangle A D C$, if $\angle A C B=25^{\circ}$ and $\angle B=125^{\circ}$, then $\angle C A D$ is
(a) 25^{0}
(b) 65°
(c) 30^{0}
(d) 75^{0}

Q. 8 In the figure, if $\triangle A B C \cong \triangle C D A$, the property of congruence is
(a) SSS
(b) SAS
(c) RHS
(d) ASA

Q. 9 It is not possible to construct a triangle when its sides are
(a) $8.3 \mathrm{~cm}, 3.4 \mathrm{~cm}, 6.1 \mathrm{~cm}$
(b) $5.4 \mathrm{~cm}, 2.3 \mathrm{~cm}, 3.1 \mathrm{~cm}$
(c) $6 \mathrm{~cm}, 7 \mathrm{~cm}, 10 \mathrm{~cm}$
(d) $3 \mathrm{~cm}, 5 \mathrm{~cm}, 5 \mathrm{~cm}$
Q. 10 In a $\triangle A B C$, if $\mathrm{AB}=\mathrm{AC}$ and BC is produced to D such that $\angle A C D=100^{\circ}$ then $\angle A$
(a) 20°
(b) 40°
(c) 60°
(d) 80°
Q. 11 If $\triangle P Q R \cong \triangle E F D$, then $\angle E=$
(a) $\angle P$
(b) $\angle Q$
(c) $\angle R$
(d) None of these
Q. 12 If $\triangle P Q R \cong \triangle E F D$, then $E D=$
(a) PQ
(b) $Q R$
(c) PR
(d) None of these

Section - B

Q. 13 In the figure $A B=A C$ and $\angle A C D=120^{\circ}$ find $\angle A$

Q. 14 In a $\triangle A B C$ if $\angle A=45^{\circ}$ and $\angle B=70^{\circ}$ determine the shortest and largest sides of the triangle.
Q. 15 In the given figure AB is bisector of $\angle A$ and $\mathrm{AC}=\mathrm{AD}$ Prove that $\mathrm{BC}=\mathrm{BD}$ and $\angle C=\angle D$

Q. 16 AD is an altitude of an isosceles triangle $A B C$ is which $A B=A C$. Prove that $\angle B A D=\angle D A C$
Q. 17 In an acute angled $\triangle A B C, S$ is any point on $B C$. Prove that $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>2 \mathrm{AS}$
Q. 18 In the given figure $B A \perp A C, D E \perp D F$ such that $\mathrm{BA}=\mathrm{DE}$ and $\mathrm{BF}=\mathrm{EC}$ show that $\triangle A B C \cong \triangle D E F$

Q. 19 Q is a point on the side SR of $\mathrm{A} \triangle P S R$ such that $\mathrm{PQ}=\mathrm{PR}$. Prove that $\mathrm{PS}>\mathrm{PQ}$

Visit www.ncerthelp.com for Ncert Solutions in Text and Video, CBSE Sample papers, Exam tips, NCERT BOOKS, Motivational Videos, Notes for All Classes and Many More...

Section - C

Q. 20 In the given figure if AD is the bisector of $\angle A$ show that
(i) $A B>B D$
(ii) $A C>C D$

Q. 21 In the given figure $\mathrm{AB}=\mathrm{AC}, \mathrm{D}$ is the point is the interior of $\triangle A B C$ such that $\angle D B C=\angle D C B$ Prove that AD bisects $\angle B A C$ of $\triangle A B C$

Q. 22 Prove that if two angles of a triangle are equal then sides opposite to them are also equal.
Q. 23 In the figure, it is given that $\mathrm{AE}=\mathrm{AD}$ and $\mathrm{BD}=\mathrm{CE}$. Prove that $\triangle A E B \cong \triangle A D C$

Q. 24 Prove that angles opposite to two equal sides of a triangle are equal.
Q. 25 In the figure $\mathrm{AD}=\mathrm{AE}$ and D and E are points on BC such that $\mathrm{BD}=\mathrm{EC}$ Prove that $A B=A C$

Q. 26 Prove that medians of an equilateral triangle are equal.
Q. 27 In the given figure $\angle C P D=\angle B P D$ and $A D$ is the bisector of $\angle B A C$. Prove that $\triangle B A P \cong \triangle C A P$ and hence $\mathrm{BP}=\mathrm{CP}$

Section - D

Q. 28 In the figure $\angle B=\angle C$ show that $A E>A F$

Q. 29 In the figure $\angle B C D=\angle A D C$ and $\angle A C B=\angle B D A$. Prove that $\mathrm{AD}=\mathrm{BC}$ and $\angle A=\angle B$

Q. 30 In the given figure $A P \perp l$ and $\mathrm{PR}>\mathrm{PQ}$. Show that $\mathrm{AR}>\mathrm{AQ}$

Q. 31 Prove that if in two triangles two angles and the included side of one triangle are equal to two angles and the included side of the other triangle, then the two triangles are congruent.
Q. 32 In the given figure PQR is a triangle and S is any point in its interior, show that

$$
\mathrm{SQ}+\mathrm{SR}<\mathrm{PQ}+\mathrm{PR}
$$

Answers :

(1) b
(2) b
(3) b
(4) b
(5) c
(6) b
(7) C
(8) c
(9) b
(10) a
(11) a
(12) C
(13) 60^{0}
(14) BC, AC

